Как найти уменьшаемое вычитаемое разность правило

Содержание
  1. Вычитание
  2. Как называются числа при вычитании?
  3. Как найти неизвестное вычитаемое
  4. Как найти неизвестное уменьшаемое
  5. Если к разности прибавить вычитаемое, получится уменьшаемое
  6. Советуем посмотреть:
  7. Правило встречается в следующих упражнениях:
  8. Разность чисел в математике: что это означает и способы того, как ее найти, определение вычитания или правила его нахождения в 3 классе
  9. Вычитание
  10. Вычитание однозначных чисел
  11. Способы вычитания
  12. Вычитание многозначных чисел
  13. Поиск уменьшаемого, вычитаемого и разности на простых примерах для первоклассников
  14. Как найти неизвестные
  15. Как найти разность
  16. Правило поиска уменьшаемого
  17. Как найти вычитаемое
  18. Вычитаемое уменьшаемое разность – правило: что это такое и как их найти
  19. Значение терминов
  20. Что такое разность чисел в математике
  21. Что такое уменьшаемое и вычитаемое
  22. Правила нахождения неизвестного элемента
  23. Как найти уменьшаемое
  24. Вывод
  25. Нахождение неизвестного слагаемого, множителя, и т.п.: правила, примеры, решения
  26. Нахождение неизвестного слагаемого
  27. Нахождение неизвестного вычитаемого или уменьшаемого
  28. Нахождение неизвестного множителя
  29. Нахождение неизвестного делимого или делителя
  30. Последовательное применение правил
  31. Как найти неизвестное делимое, делитель?

Вычитание

Как найти уменьшаемое вычитаемое разность правило

Познакомимся с вычитанием.

Рассмотрим числовой ряд и вспомним, в каком порядке идут числа.

Числа идут слева направо, по порядку, как при счёте.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Посмотри на числовой ряд, по которому идёт заяц. 

Какое действие выполняет заяц?

Вычитает число 6.

Из какого числа он вычитает число 6?

Из числа 9. Мы поставили зайчика на число 9.

В какую сторону он пойдёт?

Влево, потому что у него на табличке знак минус.

Сколько шагов влево сделает зайчик? 6.

На каком делении он остановится? На числе 3.

Когда вычитаем, становится меньше.

Чем левее, тем числа меньше. 

9 – 6 = 3

Рассмотрим еще один пример.

Какое действие выполняет заяц?

Вычитает число 3.

Из какого числа он вычитает число 3?

Из числа 7. Мы поставили зайчика на число 7.

В какую сторону он пойдёт?

Влево, потому что у него на табличке знак минус.

Сколько шагов влево сделает зайчик? 3.

На каком делении он остановится? На числе 4.

Когда вычитаем, становится меньше.

Чем левее, тем числа меньше. 

7 – 3 = 4

Как называются числа при вычитании?

Число, из которого вычитают, становится МЕНЬШЕ, уменьшается, поэтому его называют “уменьшаемое”.

Число, которое вычитают, называют “вычитаемое”.

Число, которое получается в результате вычитания, называют “разность”.

Рассмотри рисунок. 

У жонглёра было 9 шариков.

Когда несколько шариков упало, осталось ещё 5 шариков.

Сколько шариков упало?

Каким действием будем находить? Вычитанием.

9 – 4 = 5 

Как называются числа при вычитании?

9 – уменьшаемое

4 – вычитаемое

5 – разность

Как найти неизвестное вычитаемое

Рассмотри рисунок.

У жонглера было 9 шариков. Когда несколько шариков упало, осталось 5.  Упали, значит, убрали.

Решаем вычитанием. Что нужно найти?

Нужно найти вычитаемое.

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

9 – 5 = 4

Вычитаемое равно 4.

Упало 4 шарика.

Как найти неизвестное уменьшаемое

Что известно?

Вычитаемое – 4.

Разность – 5.

Нужно найти уменьшаемое.

Чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое.

5 + 4 = 9

Если к разности прибавить вычитаемое, получится уменьшаемое

Именно эта связь между разностью, уменьшаемым и вычитаемым используют для проверки вычитания.

Например, 35 – 15 = 20.

Правильно ли произведено вычисление? Можно проверить так:

20 + 15 = 35, мы к разности прибавили вычитаемое и получили уменьшаемое. Значит, вычисление произведено верно и пример решен правильно.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Табличное вычитание

Письменное вычитание в столбик

Правило встречается в следующих упражнениях:

1 класс

Страница 26. Тест 1, Волкова, Проверочные работы

Страница 7, Моро, Волкова, Степанова, Учебник, 2 часть

Страница 47, Моро, Волкова, Степанова, Учебник, 2 часть

Страница 58, Моро, Волкова, Степанова, Учебник, 2 часть

Страница 83, Моро, Волкова, Степанова, Учебник, 2 часть

Страница 95, Моро, Волкова, Степанова, Учебник, 2 часть

Страница 111, Моро, Волкова, Степанова, Учебник, 2 часть

Страница 9, Моро, Волкова, Рабочая тетрадь, 2 часть

Страница 24, Моро, Волкова, Рабочая тетрадь, 2 часть

Страница 32, Моро, Волкова, Рабочая тетрадь, 2 часть

2 класс

Страница 5, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 65, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Задание 58, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 50. Вариант 1. Тест, Моро, Волкова, Проверочные работы

Страница 59. Вариант 2. № 1, Моро, Волкова, Проверочные работы

Страница 51, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 81, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 106, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 107, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 24, Моро, Волкова, Рабочая тетрадь, 2 часть

3 класс

Страница 82, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 97, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 108, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 35, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 8. Вариант 1. Тест, Моро, Волкова, Проверочные работы

Страница 9, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 51, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 98, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 99, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 18, Моро, Волкова, Рабочая тетрадь, 2 часть

4 класс

Страница 55, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 66, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 73, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 52, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 40. Вариант 1. Тест 1, Моро, Волкова, Проверочные работы

Страница 41. Вариант 2. Тест 1, Моро, Волкова, Проверочные работы

Страница 13, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 51, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 54, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 90, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

© budu5.com, 2021

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/1146

Разность чисел в математике: что это означает и способы того, как ее найти, определение вычитания или правила его нахождения в 3 классе

Как найти уменьшаемое вычитаемое разность правило

Вычесть значит отнять одно число от другого. Вычитание есть такое действие, в котором отнимают меньшее число от большего. При вычитании целых чисел большее число уменьшается на столько единиц, сколько их содержится в меньшем.

Вычесть одно число из другого значит убавить одно число другим, поэтому вычитание есть действие обратное сложению.

Вычитание

В вычитании два данных числа называются уменьшаемым и вычитаемым, а искомое — разностью.

Уменьшаемым называют большее число, от которого отнимают другое. Оно уменьшается от вычитания.

Вычитаемым называют меньшее число, которое отнимают от большего.

Разностью называют вывод, полученный от вычитания. Разность определяет, чем одно число больше другого или показывает разницу между двумя числами.

Знак вычитания. Действие вычитания обозначается знаком — (минус).

Вычитание однозначных чисел

Чтобы обозначить, что из 9 нужно вычесть 6, пишут эти числа рядом, отделяя их знаком — (минус):

Разность между этими числами будет 3, и ход вычисления выражают словесно:

девять без шести равно трем.

Письменно:

Большее число 9 будет уменьшаемым, меньшее 6 вычитаемым, число 3 остатком.

Способы вычитания

Можно двумя способами вычесть одно число из другого:

  1. или можно отнять от большего числа столько единиц, сколько их содержится в меньшем. Так, из 9 вычесть 6 значит от 9 отнять 6. Число 3 будет искомый остаток;
  2. или можно к меньшему числу прибавлять по единице до тех пор, пока не получим большее число. Так, вычитая 6 из 9, мы к 6 прибавляем 3 единицы.

Число единиц, которое нужно прибавить к меньшему числу, чтобы уравнять его с большим, определяет разность.

Меньшее число с разностью должно равняться большему числу, следовательно, меньшее число и разность суть слагаемые, а большее — их сумма. На этом основано другое определение вычитания:

  • Вычитание есть такое действие, в котором по данной сумме и одному слагаемому отыскивается другое слагаемое.

В этом случае данная сумма есть уменьшаемое, данное слагаемое — вычитаемое, а искомаяразность — другое слагаемое.

Вычитание многозначных чисел

Вычитание многозначных чисел основывается на том свойстве чисел, по которому вычесть число все-равно, что вычесть все его части. Из этого свойства видно, что вычесть какое-нибудь число все-равно, что вычесть последовательно все его единицы, десятки, сотни и т. д. Чтобы обозначить, что из числа 7228 нужно вычесть 3517, пишут:

  • 7228 — 3517 и вычитают отдельно единицы из единиц, десятки из десятков и т. д.

Чтобы облегчить вычитание, подписывают меньшее число под большим так, чтобы единицы одинаковых порядков находились в одном вертикальном столбце, проводят черту, слева ставят знак вычитания — и под чертою подписывают разность.

Ход вычисления выражают словесно:

  1. Начинаем вычитание с простых единиц: 8 без 7 составляют 1; подписывают под единицами 1.
  2. Вычитаем десятки: 2 без 1 дают 1, подписываем под десятками 1.
  3. Вычитаем сотни. Пять нельзя вычесть из 2, поэтому занимаем у следующего высшего порядка (тысяч) единицу, что и обозначаем тем, что над 7 ставим точку. Единица каждого порядка содержит 10 единиц следующего меньшего порядка. Присоединяя эти 10 единиц к 2, получим 12; 12 без 5 составляют 7, подписываем под сотнями 7. Когда занимают единицу у высшего порядка, обозначают это тем, что ставят точку над порядком, у которого занимают.
  4. Вычитаем тысячи. Тысяч осталось вместо 7 только 6, ибо одна была взята. 6 без 3 составляют 3; подписываем под тысячами 3.

Ход вычисления выражают письменно:

Пример. Из 17004 вычесть 6025.

Из 4 нельзя вычесть 5. Занимаем единицу у десятков, следующего высшего порядка, но в этом порядке единиц нет; занимаем у сотен, — и сотен нет; занимаем у тысяч и обозначаем это точкой над цифрой 7.

Единица четвертого имеет 10 единиц третьего порядка. Взяв из них одну для десятков, оставляем их в сотнях только 9. Присоединив 10 к 4, имеем 14.

Производя вычитание, получим:

  • для единиц 14 — 5 = 9
  • для десятков 9 — 2 = 7
  • для сотен 9 — 0 = 9
  • для тысяч 6 — 6 = 0

Для десятков тысяч имеем 1, ибо эту цифру уменьшаемого переносим в разность без изменения.

Ход вычисления выразится письменно:

Источник: https://obraz-ola.ru/tehnicheskie-nauki/kak-najti-raznost-chisel-v-matematike.html

Поиск уменьшаемого, вычитаемого и разности на простых примерах для первоклассников

Как найти уменьшаемое вычитаемое разность правило

> Наука > Математика > Поиск вычитаемого, уменьшаемого и разности для первоклассников

Длинная дорога в мир знаний начинается с первых примеров, простых уравнений и задач. В нашей статье мы рассмотрим уравнение вычитания, которое, как известно, состоит из трёх частей: уменьшаемое, вычитаемое, разность.

Теперь рассмотрим правила вычисления каждого из этих компонентов на простых примерах.

  • Как найти неизвестные
  • Как найти разность
  • Правило поиска уменьшаемого
  • Как найти вычитаемое

Чтобы сделать юным математикам понимание азов науки проще и доступнее, представим эти сложные и пугающие термины именами чисел в уравнении. Ведь у каждого человека есть имя, по которому к нему обращаются, чтобы о чем-то спросить, что-то рассказать, обменяться информацией.

Учитель в классе, вызывая ученика к доске, смотрит на него и называет по имени. Так и мы, глядя на числа в уравнении, можем очень легко понять, какое число как зовут.

А после уже и обратиться к числу, чтобы правильно решить уравнение или даже найти потерявшееся число, об этом чуть позже.

: разрядные слагаемые — что это?

Но, ничего не зная о числах в уравнении, давайте сначала с ними познакомимся. Для этого приведем пример: уравнение 5−3= 2. Первое и самое большое число 5 после того, как мы от него отняли 3, становится меньше, уменьшается.

Поэтому в мире математики его так и называют — Уменьшаемое. Второе число 3, которое мы отнимаем от первого, тоже легко узнать и запомнить — оно Вычитаемое.

Глядя на третье число 2, мы видим разницу между Уменьшаемым и Вычитаемым — это Разность, то, что мы получили в результате вычитания. Вот так.

Как найти неизвестные

Мы познакомились с тремя братьями:

  1. Уменьшаемым
  2. Вычитаемым
  3. Разностью.

Но бывают случаи, когда какое-то из чисел теряется или просто неизвестно. Что же делать? Все очень просто — для того, чтобы такое число найти, нам нужно знать только два других значения, а также несколько правил математики, и, конечно, уметь ими пользоваться. Начнём с самой лёгкой ситуации, когда нам нужно найти Разность.

: что такое хорда окружности в геометрии, определение и свойства.

Как найти разность

Представим, что мы купили 7 яблок, подарили 3 яблока своей сестре и оставили какое-то количество себе. Уменьшаемое — это наши 7 яблок, число которых уменьшилось.

Вычитаемое — это те 3 подаренных нами яблока. Разность — это количество оставшихся яблок. Что сделать, чтобы узнать это количество? Решить уравнение 7−3= 4.

Таким образом, хотя мы и подарили 3 яблока сестре, у нас ещё осталось 4.

Правило поиска уменьшаемого

Теперь узнаем, что делать, если потерялось Уменьшаемое.

  • Допустим, мы купили один килограмм яблок. Пришли домой, съели 4 яблока, и у нас в корзине осталось 6. Как узнать, сколько яблок у нас было? Ведь мы покупали килограмм, но точное количество не посчитали. В данном случае Уменьшаемое — это как раз и есть первоначальное количество яблок. Вычитаемое — это то число, которое мы съели, а Разность — оставшиеся. Мы не знаем число яблок, которые у нас были, поэтому поставим вместо него букву Х. У нас получается вот такой пример: X-4=6. Чтобы найти неизвестное Уменьшаемое, надо к Вычитаемому прибавить Разность, вот такое простое правило. То есть сложить 3+6=10. И вот оно, наше Уменьшаемое 10.
  • Теперь, чтобы быть уверенными, сделаем небольшую проверку — подставим все на свои места и вычислим разность. Итак, 10 -4= 6. Разность совпадает, а значит мы сделали все верно. У нас было 10 яблок, мы съели 4, осталось 6.

Как найти вычитаемое

Рассмотрим, что делать, если потерялось Вычитаемое. Представим, что мы купили 7 яблок, принесли домой и ушли гулять, а когда вернулись — осталось всего 4. Вычитаемым в этом случае будет то количество яблок, которое кто-то съел в наше отсутствие.

Давайте обозначим это число в виде буквы Y. Получится уравнение 7-Y=4. Чтобы найти неизвестное вычитаемое, надо знать простое правило и сделать следующее — из Уменьшаемого отнять Разность, то есть 7 -4= 3. Наше неизвестное значение отыскалось, это 3.

Ура! Теперь мы знаем, сколько было съедено.

На всякий случай можно проверить наши успехи и подставить отыскавшееся Вычитаемое в исходный пример. 7−3= 4. Разность не изменилась, а значит мы сделали все правильно. Было 7 яблок, съели 3, осталось 4.

Правила очень простые, но, чтобы быть уверенными и ничего не забыть, можно поступить так — самому для себя придумать лёгкий и понятный пример на вычитание и, решая другие примеры, отыскивать неизвестные значения, просто подставляя цифры и легко находить правильный ответ.

Например, 5−3= 2. Мы уже знаем, как найти и Уменьшаемое 5, и Вычитаемое 3, поэтому решая более сложное уравнение, скажем, 25-Х= 13, мы можем вспомнить наш простой пример и понять, что, чтобы найти неизвестное Вычитаемое, нужно лишь отнять от 25 число 13, то есть 25 -13= 12.

Ну вот, теперь мы познакомились с вычитанием, его главными участниками.

Мы умеем отличать их друг от друга, находить, если они неизвестны и решать любые уравнения с их участием. Пусть эти знания помогут и пригодятся вам в начале интересного и увлекательного пути в страну Математики. Удачи!

Источник: https://obrazovanie.guru/nauka/matematika/poisk-vychitaemogo-umenshaemogo-i-raznosti-dlya-pervoklassnikov.html

Вычитаемое уменьшаемое разность – правило: что это такое и как их найти

Как найти уменьшаемое вычитаемое разность правило

Существуют четыре основных арифметических действия: сложение, вычитание, умножение и деление. Они – основа математики, с их помощью производятся все остальные, более сложные вычисления. Сложение и вычитание – простейшие из них и взаимно противоположны. Но с терминами, используемыми при сложении, мы чаще сталкиваемся в жизни.

Говорим о «сложении усилий» при старании совместно получить нужный результат, о «слагаемых достигнутого успеха» и т.п.

Названия же, связанные с вычитанием, остаются в пределах математики, редко появляясь в повседневной речи. Поэтому менее привычны слова вычитаемое, уменьшаемое, разность.

Правило нахождения каждого из данных компонентов возможно применить лишь при понимании значения этих названий.

Значение терминов

В отличие от многих научных терминов, имеющих греческое, латинское или арабское происхождение, в данном случае используются слова с русскими корнями. Так что понять их значение несложно, а значит легко и запомнить, что каким термином обозначается.

Термины

Что такое разность чисел в математике

Если присмотреться к самому названию, становится заметно, что оно имеет отношение к словам «разный», «разница». Из этого можно заключить, что имеется в виду установленная разница между количествами.

! Как раскрыть модуль действительного числа и что это такое

Данное понятие в математике означает:

  • разницу между двумя числами,
  • это показатель того, насколько одно количество больше или меньше другого,
  • это результат, полученный при выполнении вычитания такое определение предлагает школьная программа.

Обратите внимание! Если количества равны друг другу, то между ними нет разницы. Значит разность их равняется нулю.

Что такое уменьшаемое и вычитаемое

Как следует из названия, уменьшаемое – это то, что делают меньше. А сделать количество меньшим можно, отняв от него часть. Таким образом, уменьшаемым называется число, от которого отнимают часть.

Вычитаемым, соответственно, называется то число, которое от него отнимают.

УменьшаемоеВычитаемоеРазность
1811=7
145=9
2622=4

Правила нахождения неизвестного элемента

Разобравшись в терминах, несложно установить, по какому правилу находится каждый из элементов вычитания.

Поскольку разность – результат данного арифметического действия, то ее и находят с помощью этого действия, никаких других правил тут не требуется. Но они есть на случай, если неизвестен другой член математического выражения.

! Уроки математики: умножение на ноль главное правило

Как найти уменьшаемое

Данным термином, как было выяснено, называют количество, из которого вычли часть. Но если одну вычли, а другая осталась в итоге, следовательно, из этих двух частей число и состоит. Получается, что найти неизвестное уменьшаемое можно, сложив два известных элемента.

Итак, в данном случае, чтобы найти неизвестное, следует выполнить сложение вычитаемого и разности:

Искомое находится путем сложения известных элементов:

Так же и во всех подобных случаях:

Вывод

Четыре основных арифметических действия – та база, на которой основываются все математические вычисления, от простых до самых сложных.

Конечно, в наше время, когда люди стремятся перепоручить технике все вплоть до мыслительного процесса, привычнее и быстрее производить вычисления с помощью калькулятора. Но любое умение увеличивает независимость человека – от технических средств, от окружающих.

Не обязательно делать математику своей специальностью, но обладать хотя бы минимальными знаниями и умениями – значит иметь дополнительную опору для собственной уверенности.

Источник: https://tvercult.ru/nauka/chto-takoe-vyichitaemoe-umenshaemoe-i-raznost-pravilo

Нахождение неизвестного слагаемого, множителя, и т.п.: правила, примеры, решения

Как найти уменьшаемое вычитаемое разность правило

Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров.

В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число.

Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.

Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.

Нахождение неизвестного слагаемого

Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9. Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x.

Согласно первоначальному условию, это число вместе с 4 образуют 9, значит, можно записать уравнение 4+x=9. Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы.

Как найти x? Для этого надо использовать правило:

Определение 1

Для нахождения неизвестного слагаемого надо вычесть известное из суммы.

В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a+b=c, то c−a=b и c−b=a, и наоборот, из выражений c−a=b и c−b=a можно вывести, что a+b=c.

Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.

Пример 1

Возьмем то уравнение, что у нас получилось выше: 4+x=9. Согласно правилу, нам нужно вычесть из известной суммы, равной 9, известное слагаемое, равное 4. Вычтем одно натуральное число из другого: 9-4=5. Мы получили нужное нам слагаемое, равное 5.

Обычно решения подобных уравнений записывают следующим образом:

  1. Первым пишется исходное уравнение.
  2. Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
  3. После этого пишем уравнение, которое получилось после всех действий с числами.

Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:

4+x=9,x=9−4,x=5.

Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4+x=9 и получим: 4+5=9.

Равенство 9=9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки.

Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.

Нахождение неизвестного вычитаемого или уменьшаемого

Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.

Определение 2

Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.

Пример 2

Например, у нас есть уравнение x-6=10. Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6, получим 16. То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:

x−6=10,x=10+6,x=16.

Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16-6=10. Равенство 16-16 будет верным, значит, мы все подсчитали правильно.

Переходим к следующему правилу.

Определение 3

Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.

Пример 3

Воспользуемся правилом для решения уравнения 10-x=8. Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10-8=2. Значит, искомое вычитаемое равно двум. Вот вся запись решения:

10-x=8,x=10-8,x=2.

Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10-2=8 и убедимся, что найденное нами значение будет правильным.

Опиши задание

Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.

Нахождение неизвестного множителя

Посмотрим на два уравнения: x·2=20 и 3·x=12. В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.

Определение 4

Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.

Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a·b=c при a и b, не равных 0, c: a=b, c: b=c и наоборот.

Пример 4

Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2. Проводим деление натуральных чисел и получаем 10. Запишем последовательность равенств:

x·2=20x=20:2x=10.

Подставляем десятку в исходное равенство и получаем, что 2·10=20. Значение неизвестного множителя было выполнено правильно.

Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x·0=11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0, а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.

Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0. Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.

Нахождение неизвестного делимого или делителя

Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.

Определение 5

Для нахождения неизвестного делимого нужно умножить делитель на частное.

Посмотрим, как применяется данное правило.

Пример 5

Решим с его помощью уравнение x:3=5. Перемножаем между собой известное частное и известный делитель и получаем 15, которое и будет нужным нам делимым.

Вот краткая запись всего решения:

x:3=5,x=3·5,x=15.

Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5. Верное числовое равенство – свидетельство правильного решения.

Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.

Переходим к следующему правилу.

Определение 6

Для нахождения неизвестного делителя нужно разделить делимое на частное.

Пример 6

Возьмем простой пример – уравнение 21:x=3. Для его решения разделим известное делимое 21 на частное 3 и получим 7. Это и будет искомый делитель. Теперь оформляем решение правильно:

21:x=3,x=21:3,x=7.

Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21:7=3, так что корень уравнения был вычислен верно.

Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0. Если же частным будет нуль, возможны два варианта.

Если делимое также равно нулю и уравнение выглядит как 0:x=0, то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней.

А вот уравнение с частным, равным 0, с делимым, отличным от 0, решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5:x=0, которое не имеет ни одного корня.

Последовательное применение правил

Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.

Пример 7

У нас есть уравнение вида 3·x+1=7. Вычисляем неизвестное слагаемое 3·x, отняв от 7 единицу. Получим в итоге 3·x=7−1, потом 3·x=6. Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.

Вот краткая запись решения еще одного уравнения (2·x−7):3−5=2:

(2·x−7):3−5=2,(2·x−7):3=2+5,(2·x−7):3=7,2·x−7=7·3,2·x−7=21,2·x=21+7,2·x=28,x=28:2,x=14.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/systems/nahozhdenie-neizvestnogo-slagaemogo-mnozhitelja/

Как найти неизвестное делимое, делитель?

В рамках нашей темы осталось разобраться, как найти неизвестное делимое при известном делителе и частном, а также как найти неизвестный делитель при известном делимом и частном. Ответить на эти вопросы позволяет уже упомянутая в предыдущем пункте связь между умножением и делением.

Чтобы найти неизвестное делимое, надо частное умножить на делитель.

Рассмотрим его применение на примере. Решим уравнение x:5=9. Чтобы найти неизвестное делимое этого уравнения надо согласно правилу умножить известное частное 9 на известный делитель 5, то есть, выполняем умножение натуральных чисел: 9·5=45. Таким образом, искомое делимое равно 45.

Покажем краткую запись решения:x:5=9,x=9·5,x=45.

Проверка подтверждает, что значение неизвестного делимого найдено верно. Действительно, при подстановке в исходное уравнение вместо переменной x числа 45 оно обращается в верное числовое равенство 45:5=9.

Заметим, что разобранное правило можно трактовать как умножение обеих частей уравнения на известный делитель. Такое преобразование не влияет на корни уравнения.

Переходим к правилу нахождения неизвестного делителя: чтобы найти неизвестный делитель, надо делимое разделить на частное.

Рассмотрим пример. Найдем неизвестный делитель из уравнения 18:x=3. Для этого нам нужно известное делимое 18 разделить на известное частное 3, имеем 18:3=6. Таким образом, искомый делитель равен шести.

Решение можно оформить и так:18:x=3,x=18:3,x=6.

Проверим этот результат для надежности: 18:6=3 – верное числовое равенство, следовательно, корень уравнения найден верно.

Понятно, что данное правило можно применять только тогда, когда частное отлично от нуля, чтобы не столкнуться с делением на нуль. Когда частное равно нулю, то возможны два случая. Если при этом делимое равно нулю, то есть, уравнение имеет вид 0:x=0, то этому уравнению удовлетворяет любое отличное от нуля значение делителя.

Иными словами, корнями такого уравнения являются любые числа, не равные нулю. Если же при равном нулю частном делимое отлично от нуля, то ни при каких значениях делителя исходное уравнение не обращается в верное числовое равенство, то есть, уравнение не имеет корней. Для иллюстрации приведем уравнение 5:x=0, оно не имеет решений.

Все легально
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: